skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Paavolainen, Lassi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Observing changes in cellular phenotypes under experimental interventions is a powerful approach for studying biology and has many applications, including treatment design. Unfortunately, not all interventions can be tested experimentally, which limits our ability to study complex phenomena such as combinatorial treatments or continuous time or dose responses. In this work, we explore unbiased, image-based generative models to analyze phenotypic changes in cell morphology and tissue organization. The proposed approach is based on generative adversarial networks (GAN) conditioned on feature representations obtained with self-supervised learning. Our goal is to ensure that image-based phenotypes are accurately encoded in a latent space that can be later manipulated and used for generating images of novel phenotypic variations. We present an evaluation of our approach for phenotype analysis in a drug screen and a cancer tissue dataset. 
    more » « less